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Introduction 
The objective of this effort was to explore the parallel implementation of NA Software SARMTI algorithm 
on KONTRON’s STAR VX hardware platform with multiple blades each with one Intel 3rd generation 
Intel® Core™ processor. A secondary object was to verify the benefits of using Gedae’s Development 
Environment both in terms of productivity and software efficiency. So the measures used are the 
processing time of the hand code produced by hand with the support of Intel experts vs the processing 
time of the same algorithms developed using Gedae, and the code size of the handcoded software vs 
the code size of the version implemented in Gedae’s Idea language. The paper will additionally include 
measures of function speed for various functions, some qualitative assessments of the processor load 
and measure of data transfer rates on the PCIe bus in KONTRON’s STAR VX hardware platform.  

NA Software SARMTI Algorithm 
NA Software (NAS), an Affiliate member of the Intel Alliance, develops and licenses advanced radar 
algorithms to defense organizations and corporations around the world. NAS also produces and sells 
low-level DSP software and signal processing libraries to board manufacturers that sell DSP products into 
the defense and aerospace sector. This software enables defense contractors to deliver their solutions 
and products to their customers quicker and more efficiently.   

This study is based on a radar algorithm developed by NAS 
called SARMTI. The geometry of an example radar system is 
shown in the diagram to the right with a sidewards looking 
radar system mounted on an aircraft. As the plane flies along 
the radar system is used to illuminate the ground.  

Radar surveillance systems are usually designed to either 
operate in a SAR (Synthetic Aperture Radar) mode or a MTI 
(Moving Target Indication) mode. The SAR mode produces 
imagery and the MTI mode produces detections of moving 
targets on the ground. There are many SAR sensors in 

operation around the world but few MTI systems that can 
detect slow moving targets on the ground due to their 
expense and large computational workload. The SARMTI algorithm by NAS uses a SAR sensor to detect 
moving targets. This algorithm has the following advantages: 

• Any SAR radar system can be turned into a MTI system. 

• Detection of moving targets to a high probability of detection and low false alarm rate is possible 
even when targets and clutter (ground) returns are mixed. 

Figure 1 - Geometry of Example RADAR 



• Accurate estimation of target position, velocity and acceleration is possible. This is not possible 
with a conventional MTI system when target and clutter returns are mixed. 

• The radar system can give both high-resolution imagery and target information at the same time. 

• Target recognition based processing is also possible even when target and clutter returns are 
mixed. 

 

An example of the output of the SARMTI algorithm with real radar data from an operational SAR system 
is given below:  

 

The picture above shows a SAR image of a road with five vehicles on it. The SAR image was produced by 
a SAR processor written by NAS, the green circles show the ground truth information (the real moving 
targets). The red circles represent the output from the SARMTI processor. In this example the SARMTI 
processor has detected and positioned all five moving targets correctly with one false alarm. 

Ecosystem 
Each one of the participants in this study brings a critical capability to the table. This section summarizes 
those capabilities.  

Intel  
Intel has a family of processors that bring great value to the defense industry. The performance of these 
processors supplies the defense industry with the computer power it needs to develop advanced 
defense systems. Intel continues to develop a deeper understanding of the lower SWAP and high 
performance requirements defense industry and to provide processors that meet those requirements. 

Figure 2 - Output of SARMTI Algorithm for Operational SAR System 



KONTRON 
KONTRON’s STAR VX system is a pre-qualified hardware platform that brings the power of multiple Intel 
processors with high speed data fabric to the defense industry. It brings a balance between the IPC 
between boards and the compute power on the boards.  

The basic structure of the system used in this benchmarking is shown in figure 3. It consists of 6 blades 
each with a single Intel quad core processor with the blades interconnected by a PCIe bus. The system 
also has a 10GETH connection not shown in this diagram.  

 

Figure 3 - Architecture of StarVX System 

Gedae 
The defense business has changed. Competition is tough and budgets are smaller. Customers will not 
accept paper designs and fund proof of concept (POC) development like they did in the past. Contractors 
have to build POC demonstrators, fielded demonstrators, production prototypes and even production 
systems using BD and IR&D budgets. The challenge is that software development dominates the risk, 
schedule and cost of sensor system development. While hardware development has progressed 
dramatically in the last 20 years, software development has only made incremental progress. 

Gedae’s offering revolutionizes software 
development. Gedae’s compiler extends the 
von Neumann programming model. When 
considering what Gedae is, Gedae is in concept 
to a compiler. Gedae has no relationship to a 
layered software approach. The von Neumann 
programming model converts a program 
written in a von Neumann language into a 
sequence of instructions for a von Neumann 
processor with 1 memory and 1 CPU. 
Effectively the collection of instructions is the 
model of the hardware that the von Neumann 

compiler targets. Gedae’s compiler targets a 
collection of von Neumann processors, 
memories and data paths (the Gedae processor). Gedae adds, among other things, data transfer 
instructions to the von Neumann set of instructions. We call this the Gedae instruction set. Gedae 
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Figure 4 - The differences and similarities between the von 
Neumann and Gedae programming models 



extends the von Neumann compiler concept to build software for the Gedae processor using the Gedae 
instruction set. In addition to the instruction set, Gedae’s compiler also uses a hardware model of the 
targeted computer system that describes the topology of processors, memories and data paths.  

The technology was reduced to practice with a development environment, and a dataflow language and 
compiler in 1995. The product’s value was proven on production programs and generated revenue. But 
it became apparent that the only successful business model required the product have 1) a language 
that could be used by all software developers regardless of their skill level, 2) a general purpose 
language that could be used to build all the software (signal, image and data processing, and control) for 
a sensor system, 3) a compiler that generated an application at least as efficient as one written by 
experts and 4) the compiler had to work on any processor and any system of processors.  

The result was not anticipated.  

1. The language is abstract. It describes the behavior of the software but doesn’t dictate directly a 
sequence of instructions. It can’t because the Gedae processor is parallel and so the instructions 
are not executed in sequence. But it does use syntax and semantics common in mainstream 
computer languages such as algebra, loops, conditionals, functions and data structures. Since 
Gedae’s Idea language extends von Neumann languages it is general purpose. 

2. The compiler can be reused on a broad class of targets without modification. A hardware model 
describes the topology of processors, memories and data paths, and registers the Gedae 
instruction set for a particular processor. The compiler constrains the application to run on the 
topology described and uses the registered instruction set. 

3. The compiler automation produces code that is more efficient than even the most skilled 
programmers can practically write by hand. Data movement and memory efficiency are critical 
to performance. In order to meet the requirement to achieve high efficiency the compiler had to 
optimize the layout of data in memory, the schedule of memory use, the data transfers and the 
concurrency.  

4. The language is even more abstract than expected. In order for the compiler to optimize the 
application, it takes responsibility for the sequence of instructions, the layout of data in memory 
including reuse of memory and multi-rate processing. As a result the language abstraction is 
pure in the sense that it must allow the compiler to determine data rates, data sizes and 
sequence without ambiguity.  

5. Before the compiler can successfully build the software, it had to verify the software is correct. 
So, the compiler links together the entire application and verifies that it can build software that 
runs and duplicates the specified behavior – informing the developer of the precise source and 
cause of any ambiguities that exist.  

As a result, Gedae’s Idea language is more abstract than MATLAB’s language in the sense that the 
developer is not directly responsible for implementing the multirate processing and the Idea language is 
more complete because it uses array algebra instead of matrix algebra. 



Gedae fixes the core issues of software development. The risk, schedule and cost of development are 
dramatically reduced making it possible to successfully react to the changing state of the defense 
industry and produce POC demonstrators, field demonstrators, production prototypes and production 
systems using IR&D and BD budgets.  

Description of Gedae Development Environment 
This section is a brief overview of Gedae’s Development environment. More detail can be found at 
www.gedae.com. 

The Idea Language 
Gedae’s Idea language is similar in abstraction to the MATLAB language making algorithm and 
application developers productive. The Idea language has the entire set of usual control features such as 
loops and conditionals and a sophisticated array algebra language. One of the more important rather 
unique features is the explicit support of data streams. The effect of the streaming features is that 
functions can be written once and the compiler is responsible for implementing the multi-rate behavior 
accommodating a regular stream of data combined with parameters that change asynchronously – 
specifically on state machine transitions. In fact, if the code is used to compute a parameter value that 
doesn’t change the compiler will compute the values during compilation and set them as parameters. 

Mapping Functions to Multiple Cores – Compiler Settings 
A table that lists all the functions in the 
application is provided to the user so the user 
can define sets of functions (a mathematic set 
partitioning). An example is shown in figure 5 to 
the right. We call this the partition table. Each 
set will be mapped to a different processing 
core in the Gedae processor model. The table is 
hierarchically organized according to the 
functional break down of the application and 
can easily accommodate tens of thousands of 
functions. The set assignments can be done 
using equations and string algebra to 
accommodate large and/or complex mappings. 
In the example shown, the indices on the right 
hand side of the variables, e.g. [0][1]ref, are 

family range variables and indicate that there 
are a family of functions. In the expressions for 
the partition names the $1 and $2 refer to these 
range variables, i.e. [$1][$2]ref.  

Family of 4 
processing 

functions for 
distribution 

 

Partition 
names 

assigned with 
string algebra 

Figure 5 - Example of function partitioning table used to 
specifiy implementation 

http://www.gedae.com/


There are a complete set of tools for specifying and analyzing the implementation. The defaults are 
good. Specifying the implementation and letting the compiler build optimized code generally take more 
than 10X less effort than using traditional approaches and dramatically reduces faults. 

Collection and Analyzing Execution Trace Data  
The compiler collects trace events at the developer’s request (a toggle button). The collection is very 
detailed and the trace tool provides the user with tools to manipulate the table for purposes of analysis. 
An example trace is shown in figure 6. The same data is displayed both on a per processor display (p0 to 
p3, the client line is the development environment) and function by function. The black bars are events 
that are processing application data. The red and green bars are overhead on the processing core 

associated with transferring data and controlling currency of processors. There are a collection of 
analysis tools that allow the developer to determine which functions are using the most time, for 
analyzing and optimizing the cost of data transfers and for determining the cause 
of any processor idle time. In the example shown p1, p2 and p3 are idle for a 
period of time when a function that is not running in parallel is occupying p0.  

Collecting Probe Data and Regression Testing 
The compiler collects probe data at the developer’s request. A table listing all of 
the outputs of functions is presented to the developer. See figure 7. The 
developer selects those data items he/she would like to probe. The example in 
figure 7 shows all outputs of the processing algorithm are selected. Gedae 
implements the algorithm with probe functions that write data to files in a 
directory of probe data for all the outputs specified. Gedae also creates a 
dictionary so the probe data can be queried for analysis during development and 
then used as regression test data during the course of partitioning, mapping and 
optimizing the implementation for the target hardware. The developer uses the 

Gedae regression testing tools to verify that the outputs of the target version have Figure 7 - Probe Table 

Processing 
on 4 cores 

Bulk of the 
processing 

time 

Figure 6 - Execution trace 
showing all evens on all CPUs 
in the system 



not changed or at least are within suitable limits. Generally errors are the responsibility of the compiler 
(Gedae, Inc.), but in some cases functions optimized for the CPU used when implementing on a target 
give slightly different results. The developer must make the decision as to whether these differences are 
acceptable. This is more likely an issue if a co-processor like an FPGA or GPU is targeted than if it is an 
Intel GPP or a TI DSP. Probe display and compare functions provided by the Gedae uses standard 
comparison techniques and “MATLAB like” displays. The developer is free to develop both display and 
comparison functions required in special situations. In addition, Gedae provides menu items to export 
probe data in .mat formats for analyzing the data using MATLAB.  

Summary 
The Gedae Idea Development Environment (GIDE) is a complete and powerful development capability. 

Description of the SARMTI Parallelization Strategy 
NA Software with advice from Intel hand coded an optimized parallel version of the software to 
demonstrate the ability to achieve HPEC performance on a KONTRON hardware platform with multiple 
Intel quad core processors. The version was developed for a 4 core Intel processor and the timing 
numbers for that version are included in this report. In addition, NA Software implemented a simple 
round robin scheme to expand the processing to 6 quad core processors. The disadvantage of this 
scheme it that round-robin dimension contained 7 iterations that do not fit well on 6 processors. The 
timing numbers for that experiment are also reported in the paper.  

It follows that with a description of the structure of the data tokens being processed and describes how 
the tokens are decomposed for distribution among the processing cores.  

The Parallelization Strategy 
Only the amount of computation not the details of the algorithm are important to the parallelization 
strategy. The algorithm, as expected, does lots of FFTs and vector arithmetic and repeats them for 
various parameterizations so the computational burden is very high. The most important details are the 
structure of the data (vector, matrix, array3d etc.) and the data that is processed as an atomic 
operation. For example, it is important to know that each row of data in a matrix is stored in contiguous 
memory. Then computing a vector operation like an FFT on each row is straight forward. On the other 
hand it is often quite inefficient to do a vector operation on the columns since that data is strided in 
memory. One usually transposes the data in memory to put the columns in contiguous memory to 
improve efficiency of the computation.  

The Structure of SARMTI Processing 
The SARMTI algorithm takes an RxC complex valued data input and runs an identical algorithm, with 
different parameterizations, 7 times to produce output target locations.   

The hand coded version divides the workload onto the processors by dividing as evenly as possible the 7 
processing steps onto the P processors.  Each of the 7 process steps is then further parallelized by 
dividing the workload onto the 4 cores.   



The Gedae Idea version processes these 7 steps sequentially and parallelizes the algorithm by 
parallelizing the Process blocks onto the P x 4 processing cores. A diagram of the software processing 
architecture is shown in figure 8. The hand coded version divides the processing as shown by the red 
vertical lines. The load balancing is not very good as shown since 2 processors are idle 1/3 of the time. 
The Gedae Idea version divides the processing as shown by the green horizontal lines. The dimension of 
the data within the processing is much bigger than 7 and more evenly divides the processing for better 
load balancing.  

 

Figure 8 - Algorithm Architecture 

The Structure of SARMTI Data 
Within each one of the processing blocks the data is a 
3d array. In the diagrams in figure 9 the cubes are 
displayed with the fastest moving index horizontal – c 
dimension (so that dimension is in contiguous 
memory), the second fastest back into the image – r 
dimension (show as a diagonal) and the slowest index 
is vertical – b dimension.  These are illustrated on the 
left side of figure n.  

Processing steps of data in the data cube have 

different requirements as to what data the algorithm 
needs to access.  Some algorithms need to atomically 
access each of the rxb vectors with c data elements.  Some need to access one of the b planes with rxc 
data points.  These are illustrated in figure 9. Note that while the two processing dependencies could be 
handled by the second division of data – it gives better load balancing to divide the relatively large r 
direction onto the small number rather than divide the data in the b direction.  Note also that converting 
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between data division in step 1 and 2 will be almost cost free because the processor cores will share the 
same memory just different parts of the memory.  



Part of the SARMTI algoritm is illustrated in figure 10 
for a P (3 in the figure) processor system.  The 
algorithm begins by broadcasting an rxc input image 
to P processors and then to the 4 cores within each of 
the three processors.  This two phase process uses 
DMA IPC to communicate the image to the P 
processors and allows zero copy shared memory to be 
used for broadcast to the 4 cores. An rxc image has all 
the information needed to generate a bxrxc data cube.  
In Step 2 vectors are generated a row at a time.  The 
output data has to be decomposed along boundaries 
that keep the entire data set processed by a function 
in contiguous local memory. Because the b dimension 
is relatively small dividing the processing in the b 
dimension onto the 4xP cores gives poor load 
balancing. The memory layout that most equally 
partitions the cube is to divide the b dimension onto 3 
processors and the row dimension onto 4 cores.  By 
contast the data in step 3 requires a complete plane of 
r by c so both the processor and the core 
decomposition is along the b dimension. In this case 
the only choice is to divide the b dimension onto the 
4P cores.  The data doesn’t have to be exchanged 
among memories in Step 3 because the data cube that 
spans the full r by c plane is all stored in the memory 
of the processor and is only separated into separate memories as it is moved through the processing 
hierarchical cache memories attached to each processing core. The compiler optimizes the transfer and 
also concurrency of the processing to insure that the transfer is as efficient as possible. In addition, since 
the compiler implements the transfer there is no need to use an IPC layer that has abstraction beyond 
lowest most efficient interface.  In Step 4 the results of Step 3 are summed into a single rxc image.  This 
summation is done by first summing the images across the cores and then summing those partial sums 
into a final image.  The IPC for summing across the core uses zero copy shared memory transfers while 
the summing across processors uses more DMA IPC.    Figure 7 is actually a simplified version of the 
algorithm.  In reality there are more subcubes generated and other interesting divisions of the data.  
However in all cases the Idea algorithm merely describes how the data is to be partitioned and the 
appropriate IPC (DMA or shared memory) is added by the Gedae compiler. 

Results 
The results demonstrate the efficiency of applications produced by the Gedae compiler, the reduction of 
cost and the compression of the development schedule.  
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NASoftware – Hand Optimized C Code 
The hand written code had about 10,000 semi-colons. There were about 1,000 semi-colons in functions 
that were free of state data, memory allocation and threading. The remain 9,000 lines of code were 
largely dedicated to infrastructure to implement IPC, threading, memory allocation and management, 
execution timing,  and debugging tools.  

The results of the hand coding are shown below. The implementation of this code for a single processor 
with 4 cores was done by expert developers with advice from Intel experts. The problem of 
implementing and optimizing performance on multiple processors was going to require serious surgery 
on the code to accommodate the corner turn of the data using the backplane. NA Software only had 
sufficient resources to implement a version that distributed the time sequence of processing the 7 data 
cubes across the 6 processors. This effort was quite successful but had the handicap of not very good 
load balancing. The timing results of the distribution are show in table 1 below. The 5 experiments are 
for various data sizes. The ratio of the size of the data set for each demonstration relative to the size of 
the data set for demonstration 1 is shown in table 7 as well.  

Table 1- Timing Result for Hand Optimized Code 

Hand Coded Timing Results 
[in seconds] 

Demonstration # 
1 2 3 4 5 

Data Ratio 1     

[N] Procs x 
[M]Cores 

1x1 6.80 14.20 28.30 72.60 285.50 

1x4 2.05 4.42 8.61 21.50 87.60 

2x4 1.17 2.39 4.73 12.00 48.60 
 

Gedae, Inc. – Gedae Idea Language and Compiler 
The 1,000 lines of “pure” C code were left untouched in the Gedae implementation. The 9,000 lines of 
code were converted into about Gedae Idea code was 750 lines of code. The code reduction was partly 
due to the abstraction of the Idea language but mostly due to the removal of the IPC, threading, 
memory management, execution timing and debugging code. That code is implemented for an 
application by Gedae’s compiler. Those instrumentations are used during development and not included 
in the final version of the software unless the developer needs access to selected information in the 
deployed application.  

The timing results are shown in table 2. The result is that the code generated by the Idea compiler runs 
about 50% faster than the hand coded version. The increased processing throughput is likely a result of 
several factors. For one thing, since Idea doesn’t support recursion, some of the code that recursively 
looked for connected regions in a Boolean image was relaced by a bwlabel kernel that labels the 
connected region and accesses the memory in a regular pattern whereas the recursive algorithm 
accesses it in an irregular pattern. But that effect was likely quite small. The primary increases in 
processing speed were due to the smaller code size, the optimized IPC and concurrency control, and 
probably most important the optimization of the complete memory plan. While the Idea compiler 



creates C code that it passes to the C compiler – it doesn’t leave any memory allocation or planning to 
the developer or the C compiler. Since it owns all the memory, the Idea compiler is able to do global 
optimization of the data layout in memory and the schedule of memory use over time. 

Table 2 - Timing Results for Code Optimized and Implemented by Gedae 

Gedae Timing Results 
[in seconds] 

Demonstration # 

1 2 3 4 5 

[N] Procs x 
[M]Cores 

1x1 4.03 8.71 17.50 42.50 172.40 

1x4 1.32 2.95 5.91 14.70 57.80 

2x4 0.74 1.63 3.25 8.20 31.80 

Conclusions 
The conclusion is that automation gives a compressed development schedule, reduced development 
cost and more efficient code. In other comparison programs it has been shown that it also gives 
generally better quality code – though the code written by NA Software was very high quality.  
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